Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(2)2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573130

RESUMO

Human hepatitis B virus (HBV) can cause chronic, lifelong infection of the liver that may lead to persistent or episodic immune-mediated inflammation against virus-infected hepatocytes. This immune response results in elevated rates of killing of virus-infected hepatocytes, which may extend over many years or decades, lead to fibrosis and cirrhosis, and play a role in the high incidence of hepatocellular carcinoma (HCC) in HBV carriers. Immune-mediated inflammation appears to cause oxidative DNA damage to hepatocytes, which may also play a major role in hepatocarcinogenesis. An additional DNA damaging feature of chronic infections is random integration of HBV DNA into the chromosomal DNA of hepatocytes. While HBV DNA integration does not have a role in virus replication it may alter gene expression of the host cell. Indeed, most HCCs that arise in HBV carriers contain integrated HBV DNA and, in many, the integrant appears to have played a role in hepatocarcinogenesis. Clonal expansion of hepatocytes, which is a natural feature of liver biology, occurs because the hepatocyte population is self-renewing and therefore loses complexity due to random hepatocyte death and replacement by proliferation of surviving hepatocytes. This process may also represent a risk factor for the development of HCC. Interestingly, during chronic HBV infection, hepatocyte clones detected using integrated HBV DNA as lineage-specific markers, emerge that are larger than those expected to occur by random death and proliferation of hepatocytes. The emergence of these larger hepatocyte clones may reflect a survival advantage that could be explained by an ability to avoid the host immune response. While most of these larger hepatocyte clones are probably not preneoplastic, some may have already acquired preneoplastic changes. Thus, chronic inflammation in the HBV-infected liver may be responsible, at least in part, for both initiation of HCC via oxidative DNA damage and promotion of HCC via stimulation of hepatocyte proliferation through immune-mediated killing and compensatory division.


Assuntos
DNA Viral/genética , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/virologia , Hepatócitos/virologia , Animais , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Hepatite B Crônica/imunologia , Hepatócitos/imunologia , Humanos , Fígado/imunologia , Fígado/virologia , Integração Viral
2.
Methods Mol Biol ; 1540: 97-118, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27975311

RESUMO

Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC), leading to ~600,000 deaths per year worldwide. Many of the steps that occur during progression from the normal liver to cirrhosis and/or HCC are unknown. Integration of HBV DNA into random sites in the host cell genome occurs as a by-product of the HBV replication cycle and forms a unique junction between virus and cellular DNA. Analyses of integrated HBV DNA have revealed that HCCs are clonal and imply that they develop from the transformation of hepatocytes, the only liver cell known to be infected by HBV. Integrated HBV DNA has also been shown, at least in some tumors, to cause insertional mutagenesis in cancer driver genes, which may facilitate the development of HCC. Studies of HBV DNA integration in the histologically normal liver have provided additional insight into HBV-associated liver disease, suggesting that hepatocytes with a survival or growth advantage undergo high levels of clonal expansion even in the absence of oncogenic transformation. Here we describe inverse nested PCR (invPCR), a highly sensitive method that allows detection, sequencing, and enumeration of virus-cell DNA junctions formed by the integration of HBV DNA. The invPCR protocol is composed of two major steps: inversion of the virus-cell DNA junction and single-molecule nested PCR. The invPCR method is highly specific and inexpensive and can be tailored to DNA extracted from large or small amounts of liver. This procedure also allows detection of genome-wide random integration of any known DNA sequence and is therefore a useful technique for molecular biology, virology, and genetic research.


Assuntos
DNA Viral , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/virologia , Hepatócitos/virologia , Reação em Cadeia da Polimerase , Integração Viral , Humanos , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA
3.
PLoS One ; 10(11): e0140909, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26560490

RESUMO

Previous studies have demonstrated that nucleic acid polymers (NAPs) have both entry and post-entry inhibitory activity against duck hepatitis B virus (DHBV) infection. The inhibitory activity exhibited by NAPs prevented DHBV infection of primary duck hepatocytes in vitro and protected ducks from DHBV infection in vivo and did not result from direct activation of the immune response. In the current study treatment of primary human hepatocytes with NAP REP 2055 did not induce expression of the TNF, IL6, IL10, IFNA4 or IFNB1 genes, confirming the lack of direct immunostimulation by REP 2055. Ducks with persistent DHBV infection were treated with NAP 2055 to determine if the post-entry inhibitory activity exhibited by NAPs could provide a therapeutic effect against established DHBV infection in vivo. In all REP 2055-treated ducks, 28 days of treatment lead to initial rapid reductions in serum DHBsAg and DHBV DNA and increases in anti-DHBs antibodies. After treatment, 6/11 ducks experienced a sustained virologic response: DHBsAg and DHBV DNA remained at low or undetectable levels in the serum and no DHBsAg or DHBV core antigen positive hepatocytes and only trace amounts of DHBV total and covalently closed circular DNA (cccDNA) were detected in the liver at 9 or 16 weeks of follow-up. In the remaining 5/11 REP 2055-treated ducks, all markers of DHBV infection rapidly rebounded after treatment withdrawal: At 9 and 16 weeks of follow-up, levels of DHBsAg and DHBcAg and DHBV total and cccDNA in the liver had rebounded and matched levels observed in the control ducks treated with normal saline which remained persistently infected with DHBV. These data demonstrate that treatment with the NAP REP 2055 can lead to sustained control of persistent DHBV infection. These effects may be related to the unique ability of REP 2055 to block release of DHBsAg from infected hepatocytes.


Assuntos
Antivirais/uso terapêutico , Vírus da Hepatite do Pato/isolamento & purificação , Hepatite Viral Animal/tratamento farmacológico , Oligodesoxirribonucleotídeos/uso terapêutico , Infecções por Picornaviridae/tratamento farmacológico , Animais , Citocinas/biossíntese , Patos , Hepatite Viral Animal/patologia , Hepatite Viral Animal/virologia , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia
4.
Liver Int ; 35(7): 1786-800, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25640596

RESUMO

Although chronic hepatitis B virus (HBV) infection is a known risk factor for the development of hepatocellular carcinoma (HCC), the steps involved in the progression from normal liver to HCC are poorly understood. In this review, we apply five conceptual models, previously proposed by Vineis et al. to explain carcinogenesis in general, to explore the possible steps involved in the initiation and evolution of HBV-associated HCC. Available data suggest that the most suitable and inclusive model is based on evolution of hepatocyte subpopulations. In this evolutionary model, HCC-associated changes are driven by selection and subsequent clonal expansion of phenotypically altered hepatocyte subpopulations in the microenvironment of the HBV-infected liver. This model can incorporate the wide range of mechanisms proposed to play a role in the initiation of HCC including oncogenic HBV proteins, integration of HBV DNA and chronic inflammation of the liver. The model may assist in the early prevention, detection and treatment of HCC and may guide future studies of the initiation of HBV-associated HCC.


Assuntos
Carcinoma Hepatocelular/virologia , Transformação Celular Viral , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/virologia , Neoplasias Hepáticas/virologia , Modelos Biológicos , Animais , Evolução Biológica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Predisposição Genética para Doença , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Hepatite B Crônica/complicações , Hepatite B Crônica/diagnóstico , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mutação , Microambiente Tumoral , Replicação Viral
5.
Virology ; 446(1-2): 357-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24074600

RESUMO

Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10(5)-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis.


Assuntos
DNA Viral/isolamento & purificação , Guanina/análogos & derivados , Vírus da Hepatite B do Pato/fisiologia , Hepatócitos/virologia , Fígado/virologia , Mitose , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/administração & dosagem , DNA Circular/isolamento & purificação , Patos , Guanina/administração & dosagem , Vírus da Hepatite B do Pato/efeitos dos fármacos , Hepatócitos/fisiologia
6.
Antimicrob Agents Chemother ; 57(11): 5291-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23939902

RESUMO

Nucleic acid polymers (NAPs) utilize the sequence-independent properties of phosphorothioate oligonucleotides (PS-ONs) to target protein interactions involved in viral replication. NAPs are broadly active against a diverse range of enveloped viruses that use type I entry mechanisms. The antiviral activity of NAPs against hepatitis B virus (HBV) infection was assessed in vitro in duck hepatitis B virus (DHBV)-infected primary duck hepatocytes (PDH). NAPs efficiently entered PDH in the absence of any transfection agent and displayed antiviral activity at concentrations of 0.01 to 10 µM, measured by their ability to prevent the intracellular accumulation of DHBV surface antigen, which was independent of their nucleotide sequence and was specifically dependent on phosphorothioation. Higher levels of antiviral activity were observed with NAPs 40 nucleotides in length or longer. The fully degenerate NAP (REP 2006) was active during DHBV infection or when added 12 h after infection. In contrast, an acidic-pH-sensitive NAP (REP 2031) that was broadly active against other viruses displayed antiviral activity when present during DHBV infection but no activity when added 12 h after infection, suggesting that NAPs exert their postentry effect in an acidic environment unique to DHBV infection. Both REP 2006 and REP 2031 displayed negligible cytotoxicity in PDH at concentrations of up to 10 µM, as assessed using an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] cytotoxicity assay. The antiviral activity of NAPs against DHBV in vitro was strictly dependent on their amphipathic character, suggesting that NAPs interact with amphipathic target(s) that are important for DHBV entry and postentry mechanisms required for infection.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B do Pato/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Oligonucleotídeos Fosforotioatos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/síntese química , Sobrevivência Celular/efeitos dos fármacos , Antígenos de Superfície da Hepatite B/biossíntese , Vírus da Hepatite B do Pato/crescimento & desenvolvimento , Hepatócitos/virologia , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Oligonucleotídeos Fosforotioatos/síntese química , Cultura Primária de Células , Relação Estrutura-Atividade
7.
Antimicrob Agents Chemother ; 57(11): 5299-306, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23939904

RESUMO

Nucleic acid polymers (NAPs) are novel, broad-spectrum antiviral compounds that use the sequence-independent properties of phosphorothioate oligonucleotides (PS-ONs) as amphipathic polymers to block amphipathic interactions involved in viral entry. Using the duck hepatitis B virus (DHBV) model of human hepatitis B virus infection, NAPs have been shown to have both entry and postentry antiviral activity against DHBV infection in vitro in primary duck hepatocytes (PDH). In the current study, various NAPs were assessed for their prophylactic activity in vivo against DHBV infection in ducks. The degenerate NAP REP 2006 prevented the development of widespread and persistent DHBV infection in 14-day-old ducks, while the acidic-pH-sensitive NAP REP 2031 had little or no prophylactic effect. REP 2006 displayed significant toxicity in ducks, which was attributed to CpG-mediated proinflammation, while REP 2031 (which has no CpG motifs) displayed no toxicity. A third NAP, REP 2055, which was designed to retain amphipathic activity at acidic pH and contained no CpG motifs, was well tolerated and displayed prophylactic activity against DHBV infection at doses as low as 1 mg/kg of body weight/day. These studies suggest that NAPs can be easily and predictably tailored to retain anti-DHBV activity and to have minimal toxic effects in vivo. Future studies are planned to establish the therapeutic efficacy of NAPs against persistent DHBV infection.


Assuntos
Antivirais/farmacologia , Infecções por Hepadnaviridae/tratamento farmacológico , Vírus da Hepatite B do Pato/efeitos dos fármacos , Hepatite Viral Animal/tratamento farmacológico , Oligonucleotídeos Fosforotioatos/farmacologia , Animais , Antivirais/síntese química , Ilhas de CpG , Esquema de Medicação , Infecções por Hepadnaviridae/virologia , Vírus da Hepatite B do Pato/crescimento & desenvolvimento , Hepatite Viral Animal/virologia , Interações Hidrofóbicas e Hidrofílicas , Oligonucleotídeos Fosforotioatos/síntese química , Relação Estrutura-Atividade , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
8.
Vaccine ; 28(46): 7436-43, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20833122

RESUMO

We recently reported the development of a successful post-exposure combination antiviral and "prime-boost" vaccination strategy using the duck hepatitis B virus (DHBV) model of human hepatitis B virus infection. The current study aimed to simplify the vaccination strategy and to test the post-exposure efficacy of combination therapy with the Bristol-Myers Squibb antiviral drug, entecavir (ETV) and either a single dose of DHBV DNA vaccines on day 0 post-infection (p.i.) or a single dose of recombinant fowlpoxvirus (rFPV-DHBV) vaccines on day 7 p.i. Whilst untreated control ducks infected with an equal dose of DHBV all developed persistent and wide spread DHBV infection of the liver, ducks treated with ETV combined with either the DHBV DNA vaccines on day 0 p.i. or the rFPV-DHBV vaccines on day 7 p.i. had no detectable DHBV-infected hepatocytes by day 14 p.i. and were protected from the development of persistent DHBV infection.


Assuntos
Infecções por Hepadnaviridae/prevenção & controle , Vírus da Hepatite B do Pato/imunologia , Hepatite Viral Animal/prevenção & controle , Vacinas de DNA/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , DNA Viral/sangue , DNA Viral/isolamento & purificação , Modelos Animais de Doenças , Patos/imunologia , Vírus da Varíola das Aves Domésticas/imunologia , Infecções por Hepadnaviridae/imunologia , Anticorpos Anti-Hepatite/sangue , Anticorpos Anti-Hepatite/imunologia , Hepatite Viral Animal/imunologia , Hepatócitos/imunologia , Hepatócitos/virologia , Imunização Secundária , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/imunologia
9.
Virology ; 406(2): 286-92, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20705309

RESUMO

Residual hepatitis B virus (HBV) DNA can be detected following the resolution of acute HBV infection. Our previous work using duck hepatitis B virus (DHBV) infected ducks, indicated that ~80% of residual DHBV DNA in the liver is in the covalently closed circular DNA (cccDNA) form, suggesting that viral DNA synthesis is suppressed. The current study asked more directly if maintenance of residual DHBV cccDNA is dependent upon ongoing viral DNA synthesis. Ducks that recovered from acute DHBV infection were divided into 2 groups and treated with the antiviral drug, Entecavir (ETV), or placebo. No major differences in the stability of cccDNA or levels of residual cccDNA were observed in liver biopsy tissues taken 95 days apart from ETV treated and placebo control ducks. The data suggest that residual DHBV cccDNA is highly stable and present in a cell population with a rate of turnover similar to normal, uninfected hepatocytes.


Assuntos
DNA Viral/genética , Infecções por Hepadnaviridae/veterinária , Vírus da Hepatite B do Pato/genética , Hepatite Viral Animal/virologia , Fígado/virologia , Doenças das Aves Domésticas/virologia , Animais , Antivirais/administração & dosagem , Replicação do DNA/efeitos dos fármacos , DNA Viral/química , DNA Viral/metabolismo , Patos , Guanina/administração & dosagem , Guanina/análogos & derivados , Infecções por Hepadnaviridae/tratamento farmacológico , Infecções por Hepadnaviridae/virologia , Vírus da Hepatite B do Pato/química , Vírus da Hepatite B do Pato/efeitos dos fármacos , Vírus da Hepatite B do Pato/fisiologia , Hepatite Viral Animal/tratamento farmacológico , Fígado/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico
10.
J Virol ; 83(17): 8396-408, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19535448

RESUMO

During a hepadnavirus infection, viral DNA integrates at a low rate into random sites in the host DNA, producing unique virus-cell junctions detectable by inverse nested PCR (invPCR). These junctions serve as genetic markers of individual hepatocytes, providing a means to detect their subsequent proliferation into clones of two or more hepatocytes. A previous study suggested that the livers of 2.4-year-old woodchucks (Marmota monax) chronically infected with woodchuck hepatitis virus contained at least 100,000 clones of >1,000 hepatocytes (W. S. Mason, A. R. Jilbert, and J. Summers, Proc. Natl. Acad. Sci. USA 102:1139-1144, 2005). However, possible correlations between sites of viral-DNA integration and clonal expansion could not be explored because the woodchuck genome has not yet been sequenced. In order to further investigate this issue, we looked for similar clonal expansion of hepatocytes in the livers of chimpanzees chronically infected with hepatitis B virus (HBV). Liver samples for invPCR were collected from eight chimpanzees chronically infected with HBV for at least 20 years. Fifty clones ranging in size from approximately 35 to 10,000 hepatocytes were detected using invPCR in 32 liver biopsy fragments (approximately 1 mg) containing, in total, approximately 3 x 10(7) liver cells. Based on searching the analogous human genome, integration sites were found on all chromosomes except Y, approximately 30% in known or predicted genes. However, no obvious association between the extent of clonal expansion and the integration site was apparent. This suggests that the integration site per se is not responsible for the outgrowth of large clones of hepatocytes.


Assuntos
Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Hepatócitos/virologia , Fígado/patologia , Pan troglodytes/virologia , Animais , DNA Viral/genética , Humanos , Reação em Cadeia da Polimerase/métodos , Provírus/genética , Integração Viral
11.
J Virol ; 83(4): 1778-89, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19073743

RESUMO

Transient hepadnavirus infections can involve spread of virus to the entire hepatocyte population. In this situation hepatocytes present following recovery are derived from infected hepatocytes. During virus clearance antiviral cytokines are thought to block virus replication and formation of new covalently closed circular DNA (cccDNA), the viral transcriptional template. It remains unclear if existing cccDNA is eliminated noncytolytically or if hepatocyte death and proliferation, to compensate for killing of some of the infected hepatocytes, are needed to remove cccDNA from surviving infected hepatocytes. Interpreting the relationship between hepatocyte death and cccDNA elimination requires knowing both the amount of hepatocyte turnover and whether cccDNA synthesis is effectively blocked during the period of immune destruction of infected hepatocytes. We have addressed these questions by asking if treatment of woodchucks with the nucleoside analog inhibitor of viral DNA synthesis entecavir (ETV) reduced hepatocyte turnover during clearance of transient woodchuck hepatitis virus (WHV) infections. To estimate hepatocyte turnover, complexity analysis was carried out on virus-cell DNA junctions created by integration of WHV and present following recovery in the livers of WHV-infected control or ETV-treated woodchucks. We estimated that, on average, 2.2 to 4.8 times less hepatocyte turnover occurred during immune clearance in the ETV-treated woodchucks. Computer modeling of the complexity data suggests that mechanisms in addition to hepatocyte death were responsible for elimination of cccDNA during recovery from transient infections.


Assuntos
Antivirais/uso terapêutico , Guanina/análogos & derivados , Vírus da Hepatite B da Marmota/efeitos dos fármacos , Hepatite B/patologia , Hepatite B/virologia , Hepatócitos/virologia , Replicação Viral/efeitos dos fármacos , Animais , DNA Viral/análise , Guanina/uso terapêutico , Hepatite B/tratamento farmacológico , Hepatócitos/química , Regeneração Hepática , Marmota
12.
J Virol ; 83(3): 1368-78, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19004940

RESUMO

The duck hepatitis B virus (DHBV) pregenomic RNA is a bicistronic mRNA encoding the core and polymerase proteins. Thirteen AUGs (C2 to C14) and 10 stop codons (S1 to S10) are located between the C1 AUG for the core protein and the P1 AUG that initiates polymerase translation. We previously found that the translation of the DHBV polymerase is initiated by ribosomal shunting. Here, we assessed the biosynthetic events after shunting. Translation of the polymerase open reading frame was found to initiate at the C13, C14, and P1 AUGs. Initiation at the C13 AUG occurred through ribosomal shunting because translation from this codon was cap dependent but was insensitive to blocking ribosomal scanning internally in the message. C13 and C14 are in frame with P1, and translation from these upstream start codons led to the production of larger isoforms of P. We named these isoforms "pre-P" by analogy to the pre-C and pre-S regions of the core and surface antigen open reading frames. Pre-P was produced in DHBV16 and AusDHBV-infected duck liver and was predicted to exist in 80% of avian hepadnavirus strains. Pre-P was not encapsidated into DHBV core particles, and the viable strain DHBV3 cannot make pre-P, so it is not essential for viral replication. Surprisingly, we found that pre-P is an N-linked glycoprotein that is secreted into the medium of cultured cells. These data indicate that DHBV produces an additional protein that has not been previously reported. Identifying the role of pre-P may improve our understanding of the biology of DHBV infection.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Vírus da Hepatite B do Pato/enzimologia , Isoenzimas/genética , Animais , Western Blotting , Linhagem Celular , Galinhas , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Glicosilação , Isoenzimas/química , Isoenzimas/metabolismo , Fases de Leitura Aberta , Biossíntese de Proteínas , Ribossomos/metabolismo
13.
Hepatol Int ; 2(1): 3-16, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19669275

RESUMO

PURPOSE: Late-stage outcomes of chronic hepatitis B virus (HBV) infection, including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) result from persistent liver injury mediated by HBV antigen specific cytotoxic T lymphocytes (CTLs). Two other outcomes that often accompany chronic infection, the emergence of mutant viruses, including HBe-antigen negative (HBeAg (-)) HBV, and a reduction over time in the fraction of hepatocytes productively infected with HBV, may also result from persistent immune attack by antiviral CTLs. To gain insights into how these latter changes take place, we employed computer simulations of the chronically infected liver. METHODS: Computational programs were used to model the emergence of both virus-free hepatocytes and mutant strains of HBV. RESULTS: The computer modeling predicted that if cell-to-cell spread of virus is an efficient process during chronic infections, an HBV mutant that replicated significantly more efficiently than the wild type would emerge as the prevalent virus in a few years, much more rapidly than observed, while a mutant that replicated with the same or lower efficiency would fail to emerge. Thus, either cell-to-cell spread is inefficient or mutants do not replicate appreciably more efficiently than wild type. In contrast, with immune selection and a higher rate of killing of hepatocytes infected with wild-type virus, emergence of mutant virus can be explained without the need for a higher replication rate. Immune selection could also explain the emergence of virus-free hepatocytes that are unable to support HBV infection, since they should have a lower turnover rate than infected hepatocytes.

14.
Virology ; 359(2): 283-94, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17078989

RESUMO

The livers of woodchucks chronically infected with woodchuck hepatitis virus (WHV) contain foci of morphologically altered hepatocytes (FAH) with "basophilic", "amphophilic" and "clear cell" phenotypes, which are possibly pre-neoplastic in nature. Interestingly, most fail to express detectable levels of WHV proteins and nucleic acids. We studied sections of WHV-infected liver tissue to determine if all foci of hepatocytes that failed to express detectable levels of WHV, as assessed by immunoperoxidase staining for WHV core antigen, could be classified morphologically as FAH. We found that at least half of the foci of WHV core antigen-negative hepatocytes did not show clear morphological differences in either H&E or PAS (periodic acid Schiff) stained sections from surrounding hepatocytes, and were therefore not designated as FAH. In the second approach, we assayed core antigen-negative foci for the presence of fetuin B, a serum protein produced by normal hepatocytes, but not by neoplastic hepatocytes in hepatocellular carcinomas. Basophilic and amphophilic FAH had reduced levels of fetuin B compared to hepatocytes present in the surrounding liver; fetuin B staining was detected in clear cell FAH but the level could not be accurately assessed because of the displacement of fetuin B to the cell periphery by accumulated glycogen. The foci of morphologically normal WHV core antigen-negative hepatocytes had similar levels of fetuin B to that of the surrounding hepatocytes. The co-existence of at least four types of WHV core antigen-negative foci, including those with no obvious morphologic changes, raises the possibility that the different foci arise from distinct primary events. We hypothesize that a common event is loss of the ability to express WHV, allowing these hepatocytes to escape immune mediated cell death and to undergo clonal expansion to form distinct foci.


Assuntos
Vírus da Hepatite B da Marmota/fisiologia , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Hepatócitos/citologia , Hepatócitos/virologia , Marmota/virologia , Animais , Linhagem Celular Tumoral , Fetuína-B , Regulação Viral da Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Hepatócitos/patologia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , alfa-Fetoproteínas/metabolismo
15.
Virology ; 351(1): 159-69, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16624364

RESUMO

We tested the efficacy of DNA vaccines expressing the duck hepatitis B virus (DHBV) pre-surface (pre-S/S) and surface (S) proteins in modifying the outcome of infection in 14-day-old ducks. In two experiments, Pekin Aylesbury ducks were vaccinated on days 4 and 14 of age with plasmid DNA vaccines expressing either the DHBV pre-S/S or S proteins, or the control plasmid vector, pcDNA1.1Amp. All ducks were then challenged intravenously on day 14 of age with 5 x 10(7) or 5 x 10(8) DHBV genomes. Levels of initial DHBV infection were assessed using liver biopsy tissue collected at day 4 post-challenge (p.c.) followed and immunostained for DHBV surface antigen to determine the percentage of infected hepatocytes. All vector vaccinated ducks challenged with 5 x 10(7) and 5 x 10(8) DHBV genomes had an average of 3.21% and 20.1% of DHBV-positive hepatocytes respectively at day 4 p.c. and 16 out of 16 ducks developed chronic DHBV infection. In contrast, pre-S/S and S vaccinated ducks challenged with 5 x 10(7) DHBV genomes had reduced levels of initial infection with an average of 1.38% and 1.93% of DHBV-positive hepatocytes at day 4 p.c. respectively and 10 of 18 ducks were protected against chronic infection. The pre-S/S and the S DNA vaccinated ducks challenged with 5 x 10(8) DHBV genomes had an average of 31.5% and 9.2% of DHBV-positive hepatocytes on day 4 p.c. respectively and only 4 of the 18 vaccinated ducks were protected against chronic infection. There was no statistically significant difference in the efficacy of the DHBV pre-S/S or S DNA vaccines. In conclusion, vaccination of young ducks with DNA vaccines expressing the DHBV pre-S/S and S proteins induced rapid immune responses that reduced the extent of initial DHBV infection in the liver and prevented the development of chronic infection in a virus dose-dependent manner.


Assuntos
Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B do Pato/imunologia , Hepatite B Crônica/prevenção & controle , Hepatócitos/virologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Modelos Animais de Doenças , Patos/imunologia , Patos/virologia , Vacinas contra Hepatite B/genética , Vírus da Hepatite B do Pato/genética , Humanos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
16.
Virology ; 348(2): 297-308, 2006 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16469347

RESUMO

As a first step in developing immuno-therapeutic vaccines for patients with chronic hepatitis B virus infection, we examined the ability of a whole-cell vaccine, expressing the duck hepatitis B virus (DHBV) core antigen (DHBcAg), to target infected cells leading to the resolution of de novo DHBV infections. Three separate experiments were performed. In each experiment, ducks were vaccinated at 7 and 14 days of age with primary duck embryonic fibroblasts (PDEF) that had been transfected 48 h earlier with plasmid DNA expressing DHBcAg with and without the addition of anti-DHBcAg (anti-DHBc) antibodies. Control ducks were injected with either 0.7% NaCl or non-transfected PDEF. The ducks were then challenged at 18 days of age by intravenous inoculation with DHBV (5 x 10(8) viral genome equivalents). Liver biopsies obtained on day 4 post-challenge demonstrated that vaccination did not prevent infection of the liver as similar numbers of infected hepatocytes were detected in all vaccinated and control ducks. However, analysis of liver tissue obtained 9 or more days post-challenge revealed that 9 out of 11 of the PDEF-DHBcAg vaccinated ducks and 8 out of 11 ducks vaccinated with PDEF-DHBcAg plus anti-DHBc antibodies had rapidly resolved the DHBV infection with clearance of infected cells. In contrast, 10 out of 11 of the control unvaccinated ducks developed chronic DHBV infection. In conclusion, vaccination of ducks with a whole-cell PDEF vaccine expressing DHBcAg elicited immune responses that induced a rapid resolution of DHBV infection. The results establish that chronic infection can be prevented via the vaccine-mediated induction of a core-antigen-specific immune response.


Assuntos
Patos/imunologia , Patos/virologia , Infecções por Hepadnaviridae/veterinária , Vírus da Hepatite B do Pato/imunologia , Hepatite Viral Animal/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Antivirais/biossíntese , Antígenos Virais/genética , Sequência de Bases , DNA Viral/genética , DNA Viral/isolamento & purificação , Fibroblastos/imunologia , Fibroblastos/virologia , Infecções por Hepadnaviridae/imunologia , Infecções por Hepadnaviridae/prevenção & controle , Infecções por Hepadnaviridae/virologia , Vírus da Hepatite B do Pato/genética , Hepatite Viral Animal/imunologia , Hepatite Viral Animal/virologia , Humanos , Plasmídeos/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Transfecção , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia , Vacinas contra Hepatite Viral/genética
17.
J Virol ; 79(19): 12242-52, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16160150

RESUMO

Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.


Assuntos
DNA Circular/análise , DNA Viral/análise , Infecções por Hepadnaviridae/virologia , Vírus da Hepatite B do Pato/genética , Vírus da Hepatite B do Pato/fisiologia , Hepatite Viral Animal/virologia , Glândulas Suprarrenais/virologia , Animais , DNA Circular/isolamento & purificação , DNA Viral/isolamento & purificação , Patos , Genoma Viral , Coração/virologia , Rim/virologia , Leucócitos Mononucleares/virologia , Fígado/virologia , Reação em Cadeia da Polimerase , Baço/virologia
18.
J Virol ; 79(9): 5819-32, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15827196

RESUMO

Entecavir (ETV), a potent inhibitor of the hepadnaviral polymerases, prevented the development of persistent infection when administered in the early stages of duck hepatitis B virus (DHBV) infection. In a preliminary experiment, ETV treatment commenced 24 h before infection showed no significant advantage over simultaneous ETV treatment and infection. In two further experiments 14-day-old ducks were inoculated with DHBV-positive serum containing 10(4), 10(6), 10(8), or 5 x 10(8) viral genomes (vge) and were treated orally with 1.0 mg/kg of body weight/day of ETV for 14 or 49 days. A relationship between virus dose and infection outcome was seen: non-ETV-treated ducks inoculated with 10(4) vge had transient infection, while ducks inoculated with higher doses developed persistent infection. ETV treatment for 49 days did not prevent initial infection of the liver but restricted the spread of infection more than approximately 1,000-fold, a difference which persisted throughout treatment and for up to 49 days after withdrawal. Ultimately, three of seven ETV-treated ducks resolved their DHBV infection, while the remaining ducks developed viremia and persistent infection after a lag period of at least 63 days. ETV treatment for 14 days also restricted the spread of infection, leading to marked and sustained reductions in the number of DHBV-positive hepatocytes in 7 out of 10 ducks. In conclusion, short-term suppression with ETV provides opportunity for the immune response to successfully control DHBV infection. Since DHBV infection of ducks provides a good model system for HBV infection in humans, it seems likely that ETV may be useful in postexposure therapy for HBV infection aimed at preventing the development of persistent infection.


Assuntos
Antivirais/uso terapêutico , Guanina/análogos & derivados , Guanina/uso terapêutico , Infecções por Hepadnaviridae/tratamento farmacológico , Vírus da Hepatite B do Pato , Hepatite Viral Animal/tratamento farmacológico , Administração Oral , Fatores Etários , Animais , Modelos Animais de Doenças , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Patos , Infecções por Hepadnaviridae/virologia
19.
J Virol ; 79(5): 2729-42, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15708992

RESUMO

Five new hepadnaviruses were cloned from exotic ducks and geese, including the Chiloe wigeon, mandarin duck, puna teal, Orinoco sheldgoose, and ashy-headed sheldgoose. Sequence comparisons revealed that all but the mandarin duck viruses were closely related to existing isolates of duck hepatitis B virus (DHBV), while mandarin duck virus clones were closely related to Ross goose hepatitis B virus. Nonetheless, the S protein, core protein, and functional domains of the Pol protein were highly conserved in all of the new isolates. The Chiloe wigeon and puna teal hepatitis B viruses, the two new isolates most closely related to DHBV, also lacked an AUG start codon at the beginning of their X open reading frame (ORF). But as previously reported for the heron, Ross goose, and stork hepatitis B viruses, an AUG codon was found near the beginning of the X ORF of the mandarin duck, Orinoco, and ashy-headed sheldgoose viruses. In all of the new isolates, the X ORF ended with a stop codon at the same position. All of the cloned viruses replicated when transfected into the LMH line of chicken hepatoma cells. Significant differences between the new isolates and between these and previously reported isolates were detected in the pre-S domain of the viral envelope protein, which is believed to determine viral host range. Despite this, all of the new isolates were infectious for primary cultures of Pekin duck hepatocytes, and infectivity in young Pekin ducks was demonstrated for all but the ashy-headed sheldgoose isolate.


Assuntos
Anseriformes/virologia , Avihepadnavirus/isolamento & purificação , Sequência de Aminoácidos , Animais , Animais Domésticos/virologia , Avihepadnavirus/classificação , Avihepadnavirus/genética , Avihepadnavirus/fisiologia , Sequência de Bases , Linhagem Celular , Galinhas , DNA Viral/genética , Patos/virologia , Feminino , Gansos/virologia , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Proteínas Virais/genética , Virulência , Replicação Viral
20.
Proc Natl Acad Sci U S A ; 102(4): 1139-44, 2005 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-15657132

RESUMO

Chronic hepadnavirus infections cause liver damage with ongoing death and regeneration of hepatocytes. In the present study we set out to quantify the extent of liver turnover by measuring the clonal proliferation of hepatocytes by using integrated viral DNA as a genetic marker for individual hepatocyte lineages. Liver tissue from woodchucks with chronic woodchuck hepatitis virus (WHV) infection was assayed for randomly integrated viral DNA by using inverse PCR. Serial endpoint dilution of viral-cell junction fragments into 96-well plates, followed by nested PCR and DNA sequencing, was used to determine the copy number of specific viral cell junctions as a measure of the clonal distribution of infected cell subpopulations. The results indicated that the livers contained a minimum of 100,000 clones of >1,000 cells containing integrated DNA, representing at least 0.2% of the hepatocyte population of the liver. Because cells with integrated WHV DNA comprised only 1-2% of total liver cells, it is likely that the total number of clones far exceeds this estimate, with as much as one-half of the liver derived from high copy clones of >1,000 cells. It may be inferred that these clones have a strong selective growth or survival advantage. The results provide evidence for a large amount of hepatocyte proliferation and selection having occurred during the period of chronic WHV infection ( approximately 1.5 years) in these animals.


Assuntos
Vírus da Hepatite B da Marmota , Hepatite B/patologia , Hepatócitos/patologia , Animais , Divisão Celular , Doença Crônica , DNA Viral/genética , Patos , Regeneração , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...